

Test genetico non invasivo per lo screening dei disturbi dello spettro autistico nei bambini

AUTISMO

I Disturbi dello Spettro Autistico (ASD – Autism Spectrum Disorders), altrimenti noti come Disturbi Pervasivi dello Sviluppo¹, sono un gruppo di condizioni caratterizzate da un disturbo comportamentale che interessa prevalentemente le aree dell'interazione sociale reciproca, dell'abilità di comunicare idee e sentimenti e della capacità di stabilire relazioni con gli altri (da <u>linee guida SINPIA</u>). I sintomi di autismo in genere vengono riconosciuti nel secondo anno di vita (12-24 mesi di età), ma possono essere osservati segnali di autismo prima dei 12 mesi se il ritardo dello sviluppo è grave o dopo di 24 mesi se i sintomi di autismo sono attenuati.

La prevalenza degli ASD è di circa l'1,5% nei paesi sviluppati², senza differenze geografiche e/o etniche, ma con una differenza tra i due sessi in quanto i maschi sono più frequentemente colpiti. Gli ASD sono spesso associati ad altre manifestazioni cliniche (comorbidità), in particolare ad alterazioni del quoziente intellettivo (QI) nel 75% dei casi, ma anche ad epilessia (15/30%) e ad anomalie elettroencefalografiche (20/50) ³. L'American Psychiatric Association, specifica diversi criteri diagnostici per l'autismo. I pazienti con autismo mostrano una compromissione qualitativa nell'interazione sociale, come manifestata da una compromissione nell'uso di comportamenti non verbali come lo sguardo, l'espressione facciale, le posture del corpo e i gesti, l'incapacità di sviluppare appropriate relazioni tra pari e la mancanza di condivisione sociale o di reciprocità. I pazienti hanno problemi di comunicazione, come un ritardo o una totale mancanza di sviluppo della lingua parlata. Nei pazienti che sviluppano un linguaggio adeguato, permane una marcata compromissione della capacità di iniziare o sostenere una conversazione, nonché un uso stereotipato o idiosincratico del linguaggio. I pazienti mostrano anche schemi di comportamento, interessi e attività ristretti, ripetitivi e stereotipati, inclusa la preoccupazione anormale per certe attività e l'inflessibile aderenza alle routine o ai rituali.

La diagnosi precoce è essenziale per un intervento precoce.

La ricorrenza di disturbi dello spettro autistico in diversi individui della stessa famiglia ha suggerito dal principio una base ereditaria per queste condizioni: il rischio di ricorrenza della condizione è aumentato nelle famiglie con un figlio affetto rispetto al rischio della popolazione generale (11-19% vs 1-2%)⁴. Oltre ai riarrangiamenti genomici evidenziabili con tecniche di array, mutazioni in singoli geni determinano una predisposizione allo sviluppo di ASD⁵.

AutismScreen ® Test

AutismScreen [®] è un accurato test di screening che analizza il DNA per mutazioni correlate a sindromi e caratteristiche associate allo spettro autistico.

Il test AutismScreen® è utile ai genitori per identificare una causa genetica che li aiuti nel processo decisionale per una pianificazione riproduttiva.

E' un test utile ai pediatri per individuare la causa genetica a conferma di una diagnosi di ASD.

Questo può essere di supporto anche per una stimolazione mirata per migliorare abilità cognitive, linguistiche e motorie necessarie per una comunicazione significativa.

Tenendo sempre in considerazione che le cause di ASD possono essere varie.

Pag. 1di6

Indicazioni relative al test AutismScreen®

Il test AutismScreen® è indicato per:

- Bambini con fratello/sorella in cui sia stata identificata una mutazione genetica responsabile di DSA
- Bambini con diagnosi di disturbi dello spettro autistico
- Bambini con diagnosi di disturbo dello sviluppo intellettuale o ritardo dello sviluppo globale

Qual è la procedura del test AutismScreen®?

Il DNA viene isolato dalle cellule raccolte mediante tampone buccale per poi essere amplificato e successivamente sequenziato tramite sequenziamento parallelo massivo (Massive parallel sequencing MPS), un processo avanzato che impiega tecniche di NEXT Generation Sequencing (NGS) mediante l'utilizzo di sequenziatori ILLUMINA, i geni inclusi nel pannello **AutismScreen®** si sequenziano completamente (esoni e regioni e adiacenti ± 5 nucleotidi) (Tabella 1) ad un'elevata profondità di lettura. Le sequenze geniche ottenute vengono analizzate attraverso un'avanzata analisi bioinformatica per determinare la presenza di eventuali mutazioni nei geni in esame.

Risultati del test AutismScreen®

"POSITIVO"

Patogenetico/ Probabile patogenetico

Un referto positivo indica che il test ha identificato una mutazione correlata a una patologia, o a probabile significato patogenetico.

Nel referto sono riportate solo le mutazioni con significato patogenetico noto o probabile patogenetico.

"NFGATIVO"

Non patogenetico / Rilevate mutazioni con probabile significato non patogenetico

Un referto negativo indica che non è stata rilevata nessuna mutazione con significato patogenetico noto o probabile patogenetico nei geni esaminati.

Un risultato negativo riduce, ma non elimina, il rischio per il bambino di essere affetto da queste malattie genetiche o altre malattie genetiche non coperte dai geni studiati nel test **AutismScreen®**. Il test è destinato esclusivamente all'identificazione delle mutazioni nel DNA correlate allo sviluppo di ASD. (patogenetiche o probabili patogenetiche).

Vengono refertate anche le varianti con significato clinico incerto (VOUS), ovvero le varianti per le quali non esistono ancora sufficienti conoscenze per la determinazione inequivocabile del significato clinico.

Nessun test genetico può rilevare tutte le possibili varianti geniche che potrebbero causare ASD.

Parametri utilizzati per la refertazione delle varianti genetiche

Il test analizza solo i geni riportati nella Tabella 1.

Verranno refertate le mutazioni classificate come patogenetiche note e le probabili patogenetiche sulla base dei dati della letteratura scientifica e della classificazione presente nel database di riferimento Human Gene Mutation Database (HGMD), aggiornato alla data del prelievo. Inoltre, seguendo le indicazioni dell'American College of Medical Genetics (ACMG), sono state considerate come patogenetiche solo le mutazioni con un valore di Minor Allele Frequency (MAF) <5% (1000 Genomes Project), riferibile come la frequenza di ricorrenza dell'allele meno comune all'interno della popolazione.

Pag. 2di6

Target Coverage

AutismScreen® è un esame di screening altamente accurato che offre una conoscenza precoce della salute del bambino. **AutismScreen®** impiega una tecnologia avanzata di sequenziamento del DNA chiamata Next Generation Sequencing (NGS), abbinata ad una avanzata analisi bioinformatica, per rilevare mutazioni in 101 geni correlate a disturbi dello spettro autistico e sindromi correlate, con un'accuratezza >99%.

Accuratezza del test AutismScreen®

Le tecniche attuali di sequenziamento del DNA producono risultati con un'accuratezza superiore al 99%. Benché questo test sia molto accurato bisogna sempre considerare i limiti dell'esame, di seguito descritti.

Limiti del test AutismScreen®

Questo esame valuta solo le malattie genetiche ed i geni elencati nella Tabella 1. Il test non evidenzia altre malattie genetiche o mutazioni in geni non specificatamente investigati.

L'esame inoltre non è in grado di evidenziare

- Mutazioni localizzate nelle regioni introniche oltre +/- 5 nucleotidi dai breakpoints
- Delezioni, inversioni, duplicazioni maggiori di 20 pb
- Mosaicismi della linea germinale (cioè mutazioni presenti solo nei gameti)

Limite intrinseco della metodologia NGS utilizzata è la mancanza di uniformità di *coverage* per ciascuna regione genica analizzata. Tale limite si traduce nella possibilità, insita nelle metodiche NGS, che specifiche mutazioni dei geni selezionati potrebbero non essere state rilevate dal test.

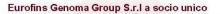
Alcune di queste varianti possono non essere ancora state identificate o validate dalla comunità scientifica e quindi non essere riportate come patogenetiche al momento dell'analisi. Per una corretta interpretazione dei risultati, è fondamentale avere informazioni accurate sulla salute del paziente e su qualsiasi patologia nella storia clinica dei genitori e dei loro parenti. Queste informazioni permettono ai nostri genetisti di interpretare meglio i risultati.

Lista dei geni e delle malattie genetiche investigate

AutismScreen® include tutti i geni per lo studio dei fenotipi analizzati nel pannello principale dell'ACMG per lo screening dei disturbi dello spettro autistico nei bambini.

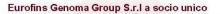
Tabella 1

AutismScr	AutismScreen® - Analisi dei principali geni coinvolti					
Geni	Patologia correlata	Geni	Patologia correlata	Geni	Patologia correlata	
ANKRD1 1	KBG Sindrome	HPRT1	HPRT-related gout	PHF6	Borjeson-Forssman-Lehmann syndrome	
AP1S2	Mental retardation, X- linked syndromic 5		Lesch-Nyhan syndrome	PNKP	Ataxia-oculomotor apraxia 4	
ARX	Epileptic encephalopathy, early infantile, 1	IMMP2L	Inner mitochondrial membrane peptidase subunit 2		Microcephaly, seizures, and developmental delay	
	Hydranencephaly with abnormal genitalia	KATNAL 2	Katanin A-Like protein 2	PQBP1	Renpenning syndrome	
	Lissencephaly, X-linked 2	KCTD13	Potassium channel tetramerization domain containing protein 13	PTCHD1	{Autism, susceptibility to, X-linked 4}	
	Mental retardation, X- linked 29 and others	KDM5C	Mental retardation, X-linked, syndromic, Claes-Jensen type	PTEN	Cowden syndrome 1	


Pag. 3di6

	Partington syndrome	KIRREL3	Kin of irre-like 3		Lhermitte-Duclos syndrome
	Proud syndrome	KLHL3	Pseudohypoaldosteronism, type		Macrocephaly/autism syndrome
ATRX	Sindrome mielodisplasia alfa-talassemia, somatica	L1CAM	Corpus callosum, partial agenesis of		VATER association with macrocephaly and ventriculomegaly
	Alfa-talassemia / sindrome da ritardo mentale		CRASH syndrome	PTPN11	LEOPARD syndrome 1
	Sindrome da facies ipotonica-ritardo mentale, legata all'X		Hydrocephalus due to aqueductal stenosis		Leukemia, juvenile myelomonocytic, somatic
AUTS2	Mental retardation, autosomal dominant 26		Hydrocephalus with congenital idiopathic intestinal pseudoobstruction		Metachondromatosis
AVPR1A	Arginine Vasopressin Receptor 1°		Hydrocephalus with Hirschsprung disease		Noonan syndrome 1
BDNF	Brain Derivered Nurotrophic Factor		MASA syndrome	RAB39B	?Waisman syndrome
BRAF	Cardiofaciocutaneous syndrome	LAMC3	Cortical malformations, occipital		Mental retardation, X-linked 72
CACNA1 C	Brugada syndrome 3	MBD5	Mental retardation, autosomal dominant 1	RAI1	Smith-Magenis syndrome
	Timothy syndrome	MECP2	Encephalopathy, neonatal severe	RBFOX1	RNA-binding proteins Fox1
CASK	FG syndrome 4		Mental retardation, X-linked syndromic, Lubs type	RELN	Lissencephaly 2 (Norman- Roberts type)
	Mental retardation and microcephaly with pontine and cerebellar		Mental retardation, X-linked, syndromic 13		{Epilepsy, familial temporal lobe, 7}
	hypoplasia Mental retardation, with or without nystagmus		Rett syndrome	RPL10	Mental retardation, X-linked, syndromic, 35
CDKL5	Epileptic encephalopathy, early infantile, 2		Rett syndrome, atypical		{Autism, susceptibility to, X-linked 5}
CHD7	CHARGE syndrome		Rett syndrome, preserved speech variant	SATB2	Glass syndrome
	Hypogonadotropic hypogonadism 5 with or without anosmia		Autism susceptibility, X-linked 3	SCN1A	Epilepsy, generalized, with febrile seizures plus, type 2
CHD8	{Autism, susceptibility to, 18}	MED12	Lujan-Fryns syndrome		Epileptic encephalopathy, early infantile, 6 (Dravet syndrome)
CNTNAP 2	Cortical dysplasia-focal epilepsy syndrome		Ohdo syndrome, X-linked		Febrile seizures, familial, 3A
	Pitt-Hopkins like syndrome 1		Opitz-Kaveggia syndrome		Migraine, familial hemiplegic, 3
	Autism susceptibility 15	MEF2C	Chromosome 5q14.3 deletion syndrome	SCN2A	Epileptic encephalopathy, early infantile, 11
CNTNAP 5	Contactin-Associated Proteine like-5		Mental retardation, stereotypic movements, epilepsy, and/or cerebral malformations		Seizures, benign familial infantile, 3
CREBBP	Rubinstein-Taybi syndrome 1	MET	?Deafness, autosomal recessive 97	SHANK2	{Autism susceptibility 17}

Pag. **4**di**6**



DHCR7	Smith-Lemli-Opitz syndrome		Hepatocellular carcinoma, childhood type, somatic	SHANK3	Phelan-McDermid syndrome
DLGAP2	Discs Large Associated Protein 2		Renal cell carcinoma, papillary, 1, familial and somatic		{Schizophrenia 15}
DMD	Becker muscular dystrophy		{Osteofibrous dysplasia, susceptibility to}	SLC6A4	{Anxiety-related personality traits}
	Cardiomyopathy, dilated, 3B	MID1	Opitz GBBB syndrome, type I		{Obsessive-compulsive disorder}
	Duchenne muscular dystrophy	NEGR1	Neuronal Growth Factor 1	SLC9A6	Mental retardation, X-linked syndromic, Christianson type
DOCK4	Dadicator of Cytokinesis 4	NHS	Cataract 40, X-linked	SLC9A9	{?Autism susceptibility 16}
DPP10	Dipeptidyl peptidase X		Nance-Horan syndrome	SMC1A	Cornelia de Lange syndrome 2
DPP6	Mental retardation, autosomal dominant 33	NIPBL	Cornelia de Lange syndrome 1	SMG6	Homolog of C. Elegans SMG6
	{Ventricular fibrillation, paroxysmal familial, 2}	NLGN3	{Asperger syndrome susceptibility, X-linked 1}	SNRPN	Prader-Willi syndrome
EHMT1	Kleefstra syndrome 1		{Autism susceptibility, X-linked 1}	SOX5	Lamb-Shaffer syndrome
FGD1	Aarskog-Scott syndrome	NLGN4X	Mental retardation, X-linked	SPAST	Spastic paraplegia 4, autosomal dominant
	Mental retardation, X- linked syndromic 16		{Asperger syndrome susceptibility, X-linked 2}	ST7	Suppressor of Tmorgenicity 7
FMR1	Fragile X syndrome		{Autism susceptibility, X-linked 2}	TCF4	Corneal dystrophy, Fuchs endothelial, 3
	Fragile X tremor/ataxia syndrome	NRXN1	Pitt-Hopkins-like syndrome 2		Pitt-Hopkins syndrome
	Premature ovarian failure 1		{Schizophrenia, susceptibility to, 17}	TSC1	Focal cortical dysplasia, type II, somatic
FOLR1	Neurodegeneration due to cerebral folate transport deficiency	NSD1	Leukemia, acute myeloid		Lymphangioleiomyomatosis
FOXG1	Rett syndrome, congenital variant		Sotos syndrome 1		Tuberous sclerosis-1
FOXP1	Mental retardation with language impairment and with or without autistic features	NTNG1	Netrin G1	TSC2	Focal cortical dysplasia, type II, somatic
FOXP2	Speech-language disorder-1	OPHN1	Mental retardation, X-linked, with cerebellar hypoplasia and distinctive facial appearance		Lymphangioleiomyomatosis, somatic
GABRB3	Epileptic encephalopathy, early infantile, 43	PAFAH1 B1	Lissencephaly 1		Tuberous sclerosis-2
	{Epilepsy, childhood absence, susceptibility to, 5}		Subcortical laminar heterotopia	UBE3A	Angelman syndrome
GABRG1	Gamma-aminobutyric acid Receptor Gamma 1	PCDH19	Epileptic encephalopathy, early infantile, 9	VPS13B	Cohen syndrome
GRIN2B	Epileptic encephalopathy, early infantile, 27	PCDH9	Protocadherin 9	ZEB2	Mowat-Wilson syndrome
	Mental retardation, autosomal dominant 6	PDE10A	Dyskinesia, limb and orofacial, infantile-onset	ZNF804 A	Zink Finger Protein 804A

Pag. 5di6

HOXA1	Athabaskan brainstem	Striatal degeneration, autosomal	
	dysgenesis syndrome	dominant	
	Bosley-Salih-Alorainy		
	syndrome		

Referenze

- 1. <u>Genetic research in autism spectrum disorders.</u> Robinson EB, Neale BM, Hyman SE. Curr Opin Pediatr. 2015 Dec;27(6):685-91.
- 2. Lyall K et Al. The Changing Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health. 2017 Mar 20;38:81-102.
- 3. Muskens JB, Velders FP, Staal WG. Medical comorbidities in children and adolescents with autism spectrum disorders and attention deficit hyperactivity disorders: a systematic review. Eur Child Adolesc Psychiatry. 2017 Sep;26(9):1093-1103.
- 4. Ronald A, Hoekstra RA. Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet 2011; 156:255–274.
- 5. Smalley, S. L. Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am. J. Hum. Genet. 60: 1276-1282, 1997.